SEMESTER -5
Comprehensive Lesson Plan: Computational Physics

(SEC-3)

Overall Learning Objectives:
Knowledge:
Understand the role of computers in physics.

Understand the concepts of algorithms and flowcharts.

Understand the fundamentals of the FORTRAN programming language.
Understand the basics of LaTeX for scientific document preparation.
Understand the basics of data visualization using Gnuplot.

Skills:
Develop algorithms and draw flowcharts for solving physics problems.

Write and execute FORTRAN programs to solve physics problems.
Use LaTeX to create scientific documents with equations, figures, and tables.
Use Gnuplot to visualize and analyze data.

Apply computational methods to solve physics problems (e.g., numerical
integration, simulation).

Materials and Resources:

Computers with access to Linux operating system and FORTRAN compiler.
LaTeX editor and compiler (e.g., TeX Live, Overleaf).

Gnuplot software.

Whiteboard or projector.

Markers or pens.

Handouts with exercises and examples.

Textbook or online resources on FORTRAN programming, LaTeX, and Gnuplot.



Lecture 1-4: Introduction & Algorithms

Learning Objectives:
Understand the role of computers in physics.

Understand the concept of algorithms: Definition, properties, development.
Understand the concept of flowcharts: Symbols, guidelines, types.
Develop algorithms and draw flowcharts for simple physics problems.

Content:
Introduction: Role of computers in physics, computational physics paradigm.

Algorithms: Definition, properties (finiteness, definiteness, effectiveness, input,
output), algorithm development.

Flowcharts: Symbols, guidelines, types. Examples:

Algorithm and flowchart for Cartesian to Spherical Polar Coordinates conversion.
Algorithm and flowchart for finding roots of a quadratic equation.

Activities:

In-class exercises: Developing algorithms and drawing flowcharts for simple
problems.

L ecture 5-9: Introduction to FORTRAN Programming

Learning Objectives:
Understand basic Linux commands (internal and external).

Understand the basic elements of FORTRAN: Character set, constants, variables,
data types, keywords.

Understand FORTRAN statements: 1/O statements, executable and non-executable
statements.

Understand the structure and layout of a FORTRAN program.
Write simple FORTRAN programs.

Content:
Introduction to Linux: Basic commands (Is, cd, mkdir, rm, cp, mv, etc.).



Introduction to FORTRAN: History, features.

Basic elements: Character set, constants, variables, data types, keywords.
Variables: Declaration, initialization.

Operators: Arithmetic, relational, logical, assignment operators.

Expressions: Arithmetic, relational, logical, character, assignment expressions.
FORTRAN statements: 1/O statements (read, write, format), executable and non-
executable statements.

Structure of a FORTRAN program: Program statement, end statement, comments.
Layout of a FORTRAN program: Source code formatting.

Activities:

Hands-on exercises: Writing and executing simple FORTRAN programs (e.g.,
calculating area of a circle, converting units).

Lecture 10-14: Control Structures & Data Structures in FORTRAN
Learning Objectives:

Understand control flow statements in FORTRAN: Branching (if, else if, select
case), looping (do, continue, do while).

Understand the concept of arrays in FORTRAN: Declaration, dimensioning,
reading, writing.

Understand the use of functions and subroutines in FORTRAN: Function
subprogram, subroutine subprogram, arguments, return statement, call statement.

Content:
Control flow statements: Branching (if, else if, select case), looping (do, continue,
do while).

Arrays: Declaration, dimensioning, reading, writing, array operations.

Functions and subroutines: Function subprogram, subroutine subprogram,
arguments, return statement, call statement.

Activities:



Hands-on exercises: Writing FORTRAN programs using control structures, arrays,
functions, and subroutines.

Lecture 15-19: LaTeX and Scientific Document Preparation
Learning Objectives:

Understand the basics of LaTeX: Document classes, basic commands, creating a
LaTeX file.

Learn to typeset mathematical equations and formulas using LaTeX.

Learn to create tables, figures, and other elements in LaTeX.
Learn to format text, create lists, and change font styles.
Learn to generate a table of contents, bibliography, and index.

Content:
Introduction to LaTeX: TeX/LaTeX word processor, basic commands.

Creating a LaTeX file: Document classes, preamble, document body.

Typesetting equations and formulas: Mathematical symbols, Greek letters,
superscripts, subscripts, fractions, matrices.

Formatting text: Fonts, font sizes, colors, spacing.

Creating tables and figures: Tabular environment, figure environment, captions.
Generating a table of contents, bibliography, and index.

Activities:

Hands-on exercises: Creating simple LaTeX documents.

Creating a LaTeX document with equations, tables, and figures.

_ecture 20-24: Data Visualization with Gnuplot

Learning Objectives:
Understand the importance of data visualization in physics.

Learn basic Gnuplot commands: Plotting data from files, plotting functions,
customizing plots.



Understand how to save and export plots from Gnuplot.
Apply Gnuplot to visualize data from physics simulations.

Content:
Introduction to graphical analysis and its limitations.

Introduction to Gnuplot: Basic commands (plot, set, save, load).
Plotting data from files: Data formats, reading data from files.
Plotting functions: Defining functions, plotting functions.
Customizing plots: Labels, titles, legends, colors, line styles.

Saving and exporting plots: Saving plots in different formats (e.g., PNG, PDF,
EPS).

Activities:

Hands-on exercises:

Plotting data from files.

Plotting functions (e.g., sine wave, exponential function).

Creating and customizing plots.

Lecture 25-30: Applications and Advanced Topics
Learning Objectives:
Apply computational techniques to solve physics problems.

Solve equations numerically (e.g., finding roots of equations).
Simulate physical systems using numerical methods.

Content:
Numerical methods: Root finding methods (e.g., bisection method, Newton-
Raphson method).

Simulation of physical systems:
Example 1: Motion of a projectile.
Example 2: Motion of a simple harmonic oscillator.

Example 3: (Optional) Motion of a particle in a central force field.



Advanced topics (if time permits):
Introduction to object-oriented programming concepts.

Brief introduction to other scientific computing languages (e.g., Python,
MATLAB).

Activities:
Hands-on exercises: Implementing numerical methods in FORTRAN.
Simulating and visualizing physical systems.

Assessment/Evaluation:
Formative:
Class participation and discussions.

In-class quizzes on FORTRAN syntax and concepts.
Code reviews and feedback on programming assignments.
Short quizzes on LaTeX commands and Gnuplot commands.

Summative:
Midterm exam covering algorithms, FORTRAN programming, and basic LaTeX.

Final exam covering all topics, including advanced applications and projects.
Programming assignments and projects.

Differentiation:
Advanced learners:
Explore more advanced topics in FORTRAN (e.qg., pointers, modules).

Work on more challenging programming projects.
Investigate other scientific computing languages (e.g., Python, MATLAB).

Struggling learners:
Provide additional practice problems and one-on-one assistance.

Offer simplified explanations and alternative learning materials.
Break down assignments into smaller, more manageable steps.

Closure:

Summarize the key concepts covered in the course.



Discuss the importance of computational skills in modern physics research.

Encourage students to explore further on their own (e.g., by working on personal
projects).

Reflection:

Were the learning objectives met?

Were the activities engaging and effective?

Were there any areas where the lesson could be improved?

What strategies can be used to enhance student understanding in future lessons?



