
SEMESTER - 5
Comprehensive Lesson Plan: Computational Physics

(SEC-3)
Overall Learning Objectives:

• Knowledge:
o Understand the role of computers in physics.

o Understand the concepts of algorithms and flowcharts.

o Understand the fundamentals of the FORTRAN programming language.

o Understand the basics of LaTeX for scientific document preparation.

o Understand the basics of data visualization using Gnuplot.

• Skills:
o Develop algorithms and draw flowcharts for solving physics problems.

o Write and execute FORTRAN programs to solve physics problems.

o Use LaTeX to create scientific documents with equations, figures, and tables.

o Use Gnuplot to visualize and analyze data.

o Apply computational methods to solve physics problems (e.g., numerical
integration, simulation).

Materials and Resources:

• Computers with access to Linux operating system and FORTRAN compiler.

• LaTeX editor and compiler (e.g., TeX Live, Overleaf).

• Gnuplot software.

• Whiteboard or projector.

• Markers or pens.

• Handouts with exercises and examples.

• Textbook or online resources on FORTRAN programming, LaTeX, and Gnuplot.

Lecture 1-4: Introduction & Algorithms
• Learning Objectives:
o Understand the role of computers in physics.

o Understand the concept of algorithms: Definition, properties, development.

o Understand the concept of flowcharts: Symbols, guidelines, types.

o Develop algorithms and draw flowcharts for simple physics problems.

• Content:
o Introduction: Role of computers in physics, computational physics paradigm.

o Algorithms: Definition, properties (finiteness, definiteness, effectiveness, input,
output), algorithm development.

o Flowcharts: Symbols, guidelines, types. Examples:

 Algorithm and flowchart for Cartesian to Spherical Polar Coordinates conversion.

 Algorithm and flowchart for finding roots of a quadratic equation.

• Activities:
o In-class exercises: Developing algorithms and drawing flowcharts for simple

problems.

Lecture 5-9: Introduction to FORTRAN Programming

• Learning Objectives:
o Understand basic Linux commands (internal and external).

o Understand the basic elements of FORTRAN: Character set, constants, variables,
data types, keywords.

o Understand FORTRAN statements: I/O statements, executable and non-executable
statements.

o Understand the structure and layout of a FORTRAN program.

o Write simple FORTRAN programs.

• Content:
o Introduction to Linux: Basic commands (ls, cd, mkdir, rm, cp, mv, etc.).

o Introduction to FORTRAN: History, features.

o Basic elements: Character set, constants, variables, data types, keywords.

o Variables: Declaration, initialization.

o Operators: Arithmetic, relational, logical, assignment operators.

o Expressions: Arithmetic, relational, logical, character, assignment expressions.

o FORTRAN statements: I/O statements (read, write, format), executable and non-
executable statements.

o Structure of a FORTRAN program: Program statement, end statement, comments.

o Layout of a FORTRAN program: Source code formatting.

• Activities:
o Hands-on exercises: Writing and executing simple FORTRAN programs (e.g.,

calculating area of a circle, converting units).

Lecture 10-14: Control Structures & Data Structures in FORTRAN

• Learning Objectives:
o Understand control flow statements in FORTRAN: Branching (if, else if, select

case), looping (do, continue, do while).

o Understand the concept of arrays in FORTRAN: Declaration, dimensioning,
reading, writing.

o Understand the use of functions and subroutines in FORTRAN: Function
subprogram, subroutine subprogram, arguments, return statement, call statement.

• Content:
o Control flow statements: Branching (if, else if, select case), looping (do, continue,

do while).

o Arrays: Declaration, dimensioning, reading, writing, array operations.

o Functions and subroutines: Function subprogram, subroutine subprogram,
arguments, return statement, call statement.

• Activities:

o Hands-on exercises: Writing FORTRAN programs using control structures, arrays,
functions, and subroutines.

Lecture 15-19: LaTeX and Scientific Document Preparation

• Learning Objectives:
o Understand the basics of LaTeX: Document classes, basic commands, creating a

LaTeX file.

o Learn to typeset mathematical equations and formulas using LaTeX.

o Learn to create tables, figures, and other elements in LaTeX.

o Learn to format text, create lists, and change font styles.

o Learn to generate a table of contents, bibliography, and index.

• Content:
o Introduction to LaTeX: TeX/LaTeX word processor, basic commands.

o Creating a LaTeX file: Document classes, preamble, document body.

o Typesetting equations and formulas: Mathematical symbols, Greek letters,
superscripts, subscripts, fractions, matrices.

o Formatting text: Fonts, font sizes, colors, spacing.

o Creating tables and figures: Tabular environment, figure environment, captions.

o Generating a table of contents, bibliography, and index.

• Activities:
o Hands-on exercises: Creating simple LaTeX documents.

o Creating a LaTeX document with equations, tables, and figures.

Lecture 20-24: Data Visualization with Gnuplot
• Learning Objectives:
o Understand the importance of data visualization in physics.

o Learn basic Gnuplot commands: Plotting data from files, plotting functions,
customizing plots.

o Understand how to save and export plots from Gnuplot.

o Apply Gnuplot to visualize data from physics simulations.

• Content:
o Introduction to graphical analysis and its limitations.

o Introduction to Gnuplot: Basic commands (plot, set, save, load).

o Plotting data from files: Data formats, reading data from files.

o Plotting functions: Defining functions, plotting functions.

o Customizing plots: Labels, titles, legends, colors, line styles.

o Saving and exporting plots: Saving plots in different formats (e.g., PNG, PDF,
EPS).

• Activities:
o Hands-on exercises:

 Plotting data from files.

 Plotting functions (e.g., sine wave, exponential function).

 Creating and customizing plots.

Lecture 25-30: Applications and Advanced Topics

• Learning Objectives:
o Apply computational techniques to solve physics problems.

o Solve equations numerically (e.g., finding roots of equations).

o Simulate physical systems using numerical methods.

• Content:
o Numerical methods: Root finding methods (e.g., bisection method, Newton-

Raphson method).

o Simulation of physical systems:

 Example 1: Motion of a projectile.

 Example 2: Motion of a simple harmonic oscillator.

 Example 3: (Optional) Motion of a particle in a central force field.

o Advanced topics (if time permits):

 Introduction to object-oriented programming concepts.

 Brief introduction to other scientific computing languages (e.g., Python,
MATLAB).

• Activities:
o Hands-on exercises: Implementing numerical methods in FORTRAN.

o Simulating and visualizing physical systems.

Assessment/Evaluation:
• Formative:
o Class participation and discussions.

o In-class quizzes on FORTRAN syntax and concepts.

o Code reviews and feedback on programming assignments.

o Short quizzes on LaTeX commands and Gnuplot commands.

• Summative:
o Midterm exam covering algorithms, FORTRAN programming, and basic LaTeX.

o Final exam covering all topics, including advanced applications and projects.

o Programming assignments and projects.

Differentiation:
• Advanced learners:
o Explore more advanced topics in FORTRAN (e.g., pointers, modules).

o Work on more challenging programming projects.

o Investigate other scientific computing languages (e.g., Python, MATLAB).

• Struggling learners:
o Provide additional practice problems and one-on-one assistance.

o Offer simplified explanations and alternative learning materials.

o Break down assignments into smaller, more manageable steps.

Closure:

• Summarize the key concepts covered in the course.

• Discuss the importance of computational skills in modern physics research.

• Encourage students to explore further on their own (e.g., by working on personal
projects).

Reflection:

• Were the learning objectives met?

• Were the activities engaging and effective?

• Were there any areas where the lesson could be improved?

• What strategies can be used to enhance student understanding in future lessons?

